Dizziness in the Elderly Diagnosis and Treatment

張滋圃 台中慈濟醫院神經內科

Dizziness in the elderly

Prevalence of dizziness

• All age: 17%

• Age > 65: 30%

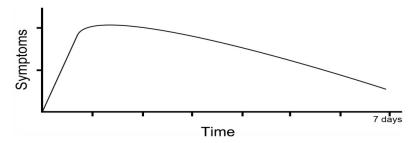
• Age > 85: 50%

• 老人頭暈找得到原因嗎?

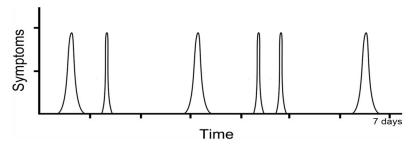
老人頭暈找得到原因嗎?

- •神經科/耳鼻喉科觀點:
- 可以!而且大部分是vestibular disorders!
- FIND THE DIAGNOSIS AND TREAT IT!
- •家醫科觀點:
- 大部分老人頭暈找不到明確的診斷,只找得到risk factors
- Multi-factor, geriatric syndrome
- TREAT THE RISK FACTORS!

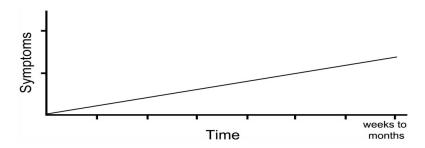
神經科醫師觀點


Etiologies of dizziness (Elderly)

•	Benign paroxysmal positional vertigo	18.3%	1
•	Phobic postural vertigo (PPPD)	15.9%	
•	Central vestibular vertigo	13.5%	1
•	Vestibular migraine	9.6%	•
•	Vestibular neuritis	7.9%	
•	Meniere's disease	7.8%	
•	Bilateral vestibulopathy	3.6%	1
•	Vestibular paroxysmia	2.9%	1
•	Perilymphatic fistula	0.4%	
•	Various other disorders	12.3%	
•	Unknown etiology	4.2%	


Aging +
Multi-sensory dizziness
Orthostatic hypotension
Cardiac arrhythmia
Drug-induced dizziness

Classification by Timing: Vestibular syndromes


Acute vestibular syndrome (AVS)

• Episodic vestibular syndrome (EVS): spontaneous (sEVS) and triggered (tEVS)

Chronic vestibular syndrome (CVS)

Acute vestibular syndrome

- Acute and prolonged vertigo over 24 hours
- Often monophasic (recurrence rate <5%)
- 75% Peripheral vestibular neuritis (no auditory symptoms), labyrinthitis (with auditory symptoms), Ramsay Hunt syndrome
 25% Central – stroke (more common in the elderly)

當被急診醫師照會眩暈時,你會怎麼做?

1. 做NE,看有沒有其他neurological signs

2. 問stroke risk factors

3. 做CT

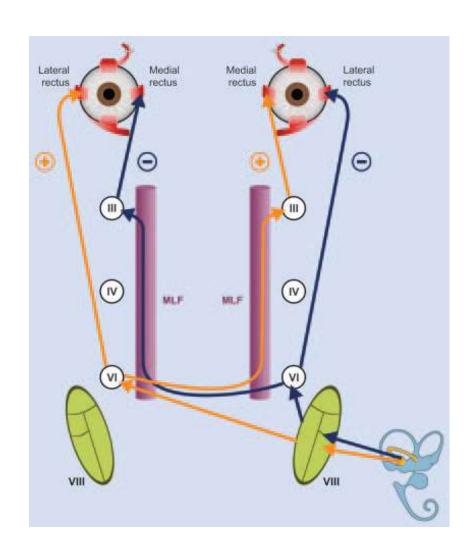
Sensitivity for central lesion

50%

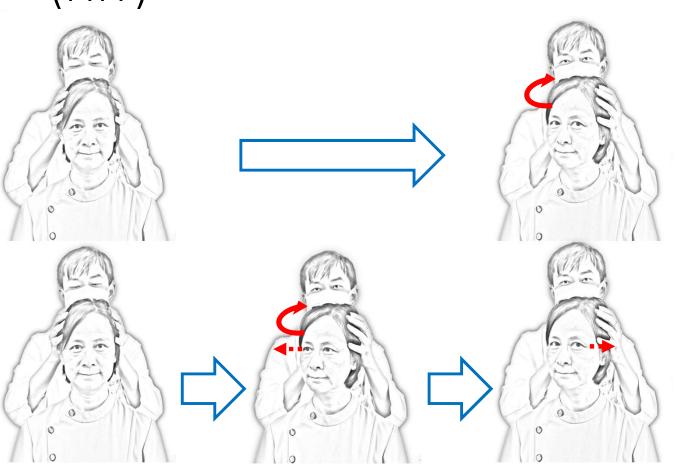
60%

30%

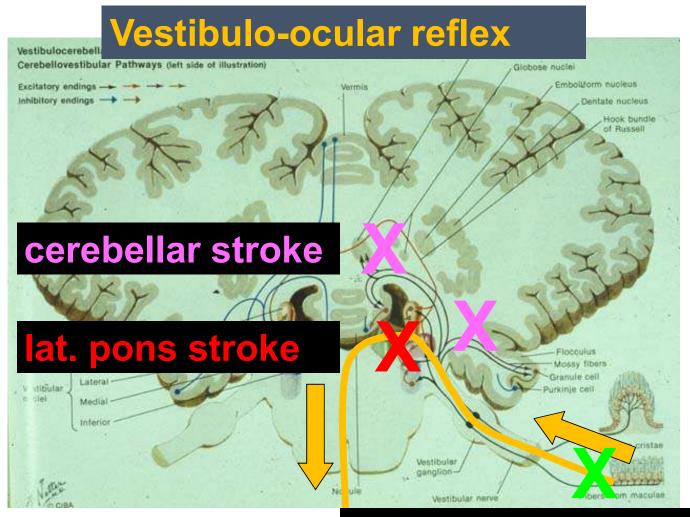
Central-type Nystagmus


- Pure vertical nystagmus or pure torsional nystagmus
- Direction-changing nystagmus in the gaze

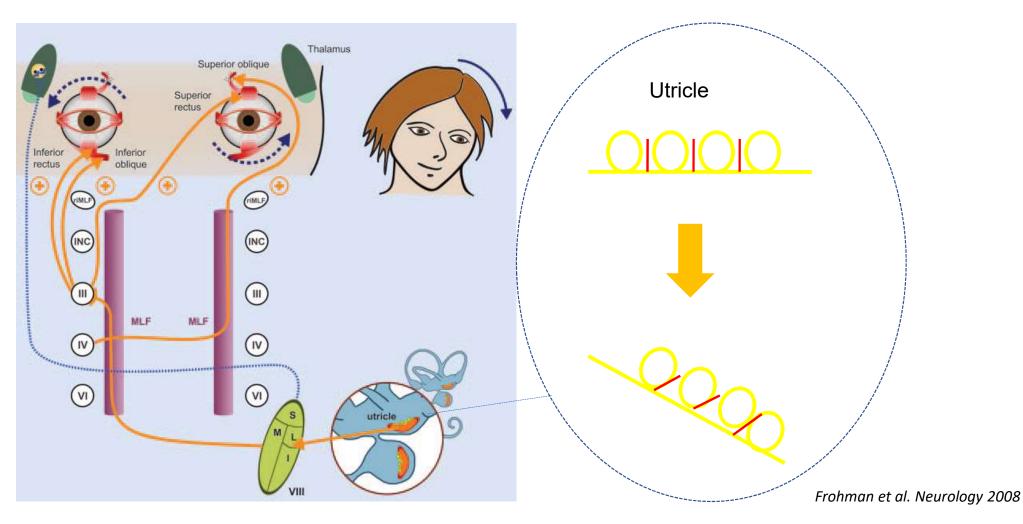
	Peripheral	Central	
Obvious oculomotor signs	0%	32%	0.68 (0.59–0.80)*
Dominantly vertical or torsional nystagmus	0%	12%	0.88 (0.81–0.96)
Oculomotor paralysis (3-4-6, INO, gaze palsy)	0%	21%	0.79 (0.70–0.89)*
Subtle oculomotor signs	4%	100%	0.00 (0.00–0.11)*
Direction-changing horizontal nystagmus	0%	20%	0.80 (0.72–0.90)*


60-70% of central-type vertigo presents with "peripheral-type" nystagmus (uni-directional, horizontal)!

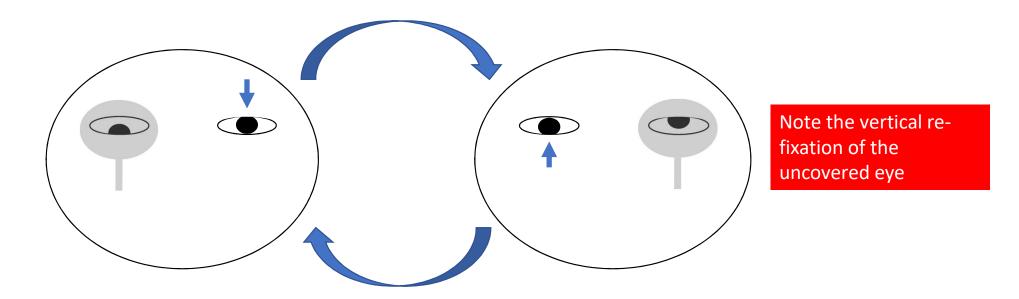
Head impulse test


- The most important function of vestibular system in human is to stabilize vision during headbody movement.
- This purpose is achieved via vestibulo-ocular reflex (VOR).

VOR test in clear patients: Head Impulse Test (HIT)



- Vestibular neuritis; labyrinthitis
 - **Abnormal** HIT: > 95%
- Vertigo caused by stroke
 - Abnormal HIT: 15%
 - Normal HIT: 85%



vestibular neuritis

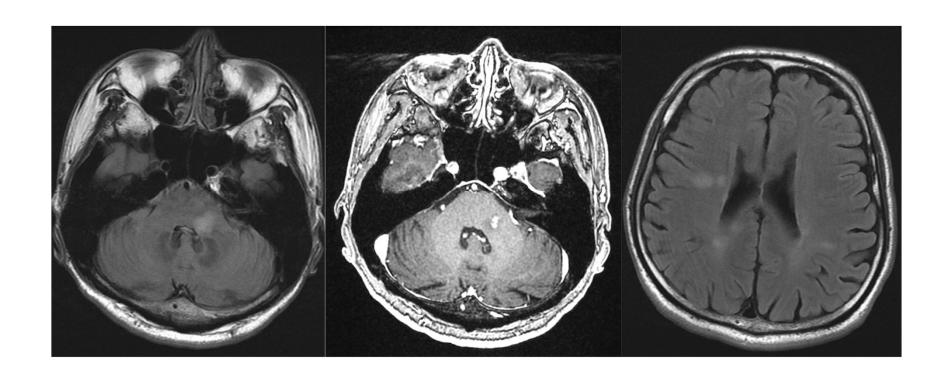
Skew Deviation — Otolith-Ocular reflex

Test of skew deviation – alternate cover test

- Skew deviation can be a peripheral sign in the laboratory, but duration is usually brief.
- In clinical practice, skew deviation is a central sign.

HINTS

- HINTS= Head Impulse test, Nystagmus, Test of Skew
- Normal HIT, direction-changing nystagmus, or skew deviation imply stroke.

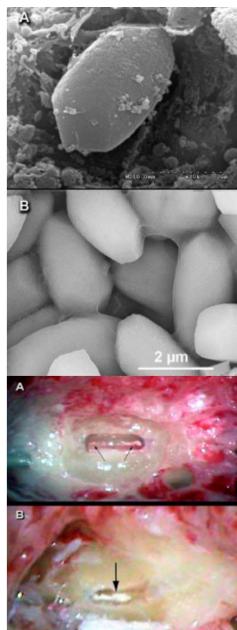

Test Properties	ABCD2 ≥ 4 (Five-item Rule*)	HIT (One-step Rule*)	HINTS (Three-step Rule*)	HINTS "Plus" (Four-step Rule*)
Stroke only ($n = 113$ stroke, $n = 113$	= 77 nonstroke)			
Sensitivity for stroke	61.1 (51.8–69.7)	90.3 (83.7–94.8)	96.5 (91.7–98.9)	99.1 (95.7–100.0)
Specificity for stroke	62.3 (51.2–72.6)	87.0 (78.1–93.2)	84.4 (75.0–91.3)	83.1 (73.5–90.3)
LR+ stroke	1.62 (1.17–2.24)	6.95 (3.89–12.43)	6.19 (3.68–10.42)	5.87 (3.58–9.64)
LR– stroke	0.62 (0.47–0.83)	0.11 (0.06–0.20)	0.04 (0.02–0.11)	0.01 (0.00–0.08)
Reduction missed stroke [†]	Reference case	75.0	90.9	97.7
Any central cause ($n = 124$ cen	tral, $n = 66$ peripheral)			
Sensitivity for central	58.1 (49.2–66.5)	91.1 (85.1–95.3)	96.8 (92.4–99.0)	99.2 (96.1–100.0)
Specificity for central	60.6 (48.5–71.8)	100.0 (95.6–100.0)	98.5 (92.8–99.9)	97.0 (90.4–99.5)
LR+ any central cause	1.47 (1.05–2.06)	>91.1 [‡] (NC)	63.9 (9.13–446.85)	32.7 (8.36–128.16)
LR- any central cause	0.69 (0.52–0.92)	0.09 (0.05–0.16)	0.03 (0.01–0.09)	0.01 (0.00–0.06)
Reduction missed central [†]	Reference Case	78.8	92.3	98.1

Newman-Toker et al. Acad Emerg Med 2013

Case

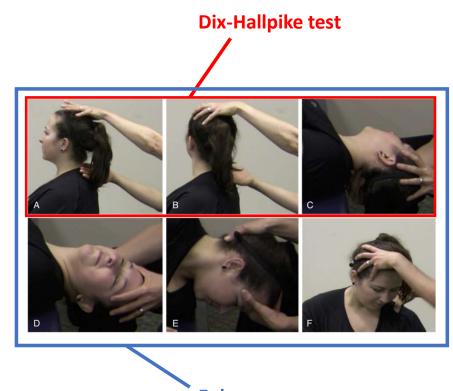
- 30-year-old man
- He experienced vertigo and left hearing loss one week ago, and was diagnosed as "PERIPHERAL VERTIGO" in a Neurology clinic
- Vertigo improved after medical treatment, but recurred one week later.
 - Head impulse test: left side impaired
 - Nystagmus: right-beating nystagmus, unidirectional
 - ...looks like peripheral...
 - Skew deviation: video

Case - HINTS



Episodic vestibular syndrome – triggered

- D/D
 - BPPV vs Orthostatic Hypotension vs CPPV


Benign Paroxysmal Positional Vertigo (BPPV)

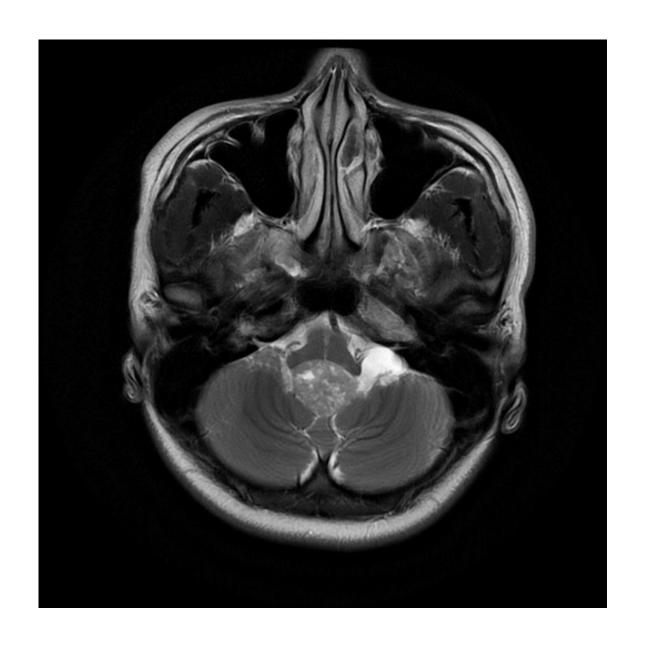
- The most common vertigo (prevalence: 3%), and more common in the elderly
- Otoconia drop into semicircular canals
- Vertigo during position change
 - Lying down or sitting up from bed
 - Rolling over in bed
- **Duration:** secs 1 min
- Always positional vertigo?

BPPV in the elderly

- Atypical presentation in the elderly
 - Chronic dizziness & unsteadiness rather than positional vertigo
- Gold standard for diagnosis (even in chronic dizziness)
 - Dix-Hallpike test for posterior canal BPPV
 - Supine-roll test for horizontal canal BPPV
- Treatment: Canalith repositioning maneuver

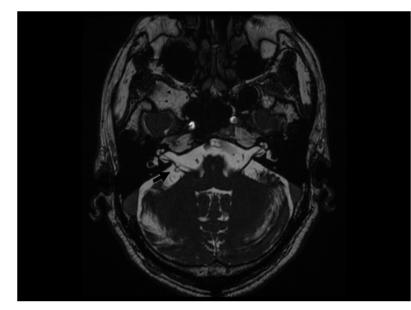
Epley maneuver

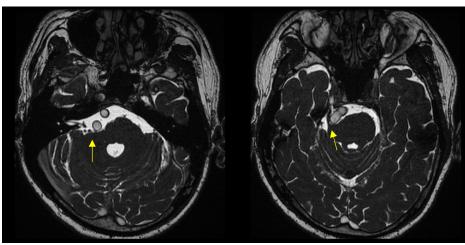

Orthostatic Hypotension (OH)


- Dizziness when standing up from lying, sitting or from squatting
- No dizziness when lying down or rolling over
- •用會不會『眩』區別BPPV和OH?
- BPPV在老人身上經常不會『眩』,只會『暈』
- OH病人中,約30%曾感覺到『眩』
- Gold Standard
 - Orthostatic BP
 - Tilt table test

@ ELSEVIER, INC. - NETTERIMAGES.COM

Central Paroxysmal Positional Vertigo (CPPV)

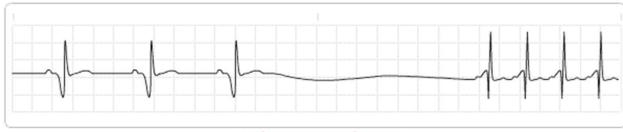



Episodic vestibular syndrome – Spontaneous

- Classification by time:
 - Secs: VP vs arrhythmia
 - Mins-Hrs: MD vs VM vs VBI

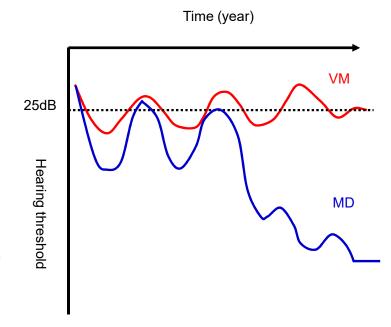
Vestibular Paroxysmia (VP)

- 2.9-4% in Neurology Dizziness Clinic
- Paroxysmal brief and frequent vertigo/dizziness
 - Duration: seconds to one minute
 - Frequency: often 5-100/day
 - Tinnitus: sometimes (25%) accompanied by paroxysmal typewriter tinnitus
 - Attack: at rest, during position change, or both
- Treatment (very effective): carbamazepine, oxcarbazepine
- Theory: neurovascular compression of CN VIII
- More at old age because of dolicoectasia



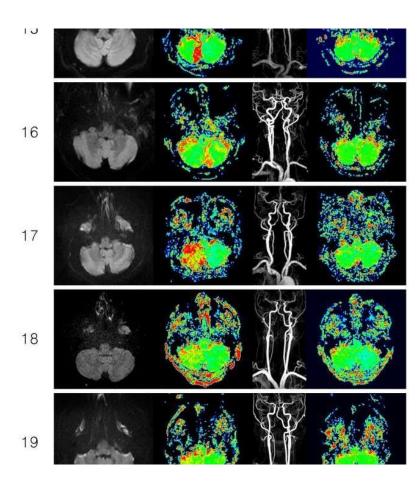
Jannetta et al. N Engl J Med 1984 Brandt et al. Lancet 1994 Hufner et al. Neurology 2008

Arrhythmia-induced brief dizziness — Not Rare!


- Etiology: cardiac long pause by sick sinus syndrome (SSS), high-degree
 AV block
- Spontaneous attacks, not posture-related
- Not spinning, but may be hard to identify in so brief episodes
- Always with syncope?
- Diagnosis: R-R interval in Holter ECG
 - > 3 secs: black-out sensation or syncope
 - 2-3 secs: only dizziness

Sick Sinus Syndrome

Meniere's Disease (MD) and Vestibular Migraine (VM)

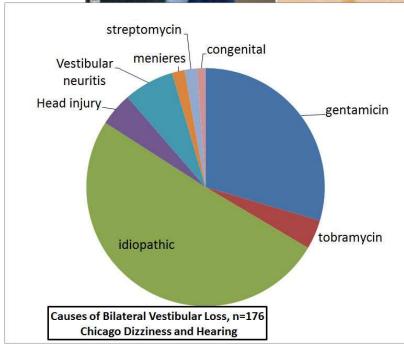

- Meniere's disease: always with hearing loss?
 - Recurrent vertigo (20mins 12hrs)
 - Tinnitus
 - Low-frequency sensorineural hearing loss
 - Can be isolated vertigo in the initial episodes
 - 2 years after onset: progressive hearing loss
- Vestibular migraine: always with headache?
 - Temporal dissociation between dizziness and headache (50%), more dissociation at old age
- Onset at old age: always consider other diagnoses

Lopez-Escamez et al. J Vestib Res 2015 Lempert et al. J Vestib Res 2012 Pagnini et al. Acta Otorhinolaryngol Ital. 2014

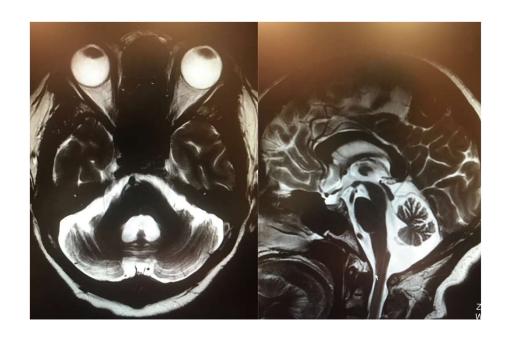
Vertebrobasilar Insufficiency (VBI)

- VBI always with other neurological symptoms?
- 62% VBI: At least one episode is isolated vertigo
- 21% VBI: All episodes are isolated vertigo
- Recurrent vertigo over 2 years usually indicates benign origin.
- First episode (acute transient vestibular syndrome): 27% are VBI or stroke

Chronic vestibular syndrome


CVS in the elderly: often non-specific; without abnormal signs

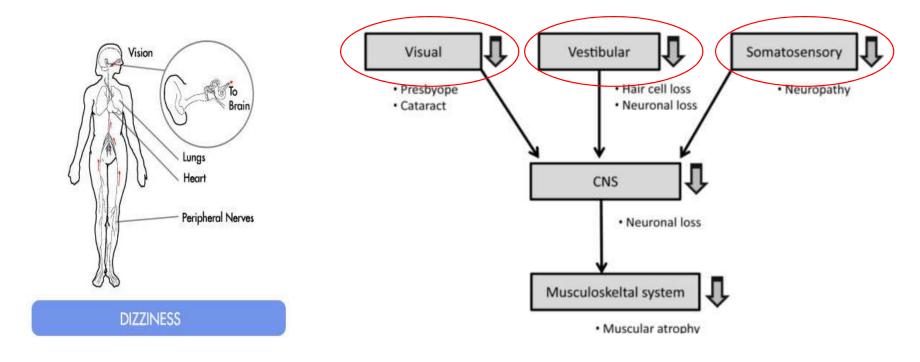
"Inner ear degeneration?"


Bilateral Vestibulopathy

- Not only chronic dizziness
- Oscillopsia during head motion or walking
 - Head impulse test: Positive at bilateral sides
 - Dynamic visual acuity: Decreased
- Postural imbalance (worse in darkness)
 - Romberg test: abnormal (acute stage)
 - Sharpened Romberg test: abnormal (chronic stage)
- Etiology:
 - Gentamicin ototoxicity, bilateral Meniere's disease, etc.
 - > 50% are "idiopathic"...Inner ear degeneration?
 - In a recent study, 76% combined with central pathology (e.g. cerebellar degeneration)

Kattah et al. Front Neurol 2018

	檢驗項目	檢驗结果	單位	参考值
Blot-03	Paraneoplastic Neurologic Syndrome			
	Amphiphsyin	-		-
	CV2	-		-
	PNMA2(Ma2/Ta)	-		-
	Ri	-		-
	Yo	+++		-
	Hu	~		-
	Recoverin	: **		-
	SOX1	+++		-
	Titin	-		-
	Zic4	-		, ;
	GAD65	-		
	Tr(DNER)	-		-


- : Negative / ± : Trace / + : Positive

Presbyvestibulopathy

- Many older people with dizziness: low-normal or borderline vestibular function.
- Presbyvestibulopathy ICVD criteria (International Classification of Vestibular disorders)
- A. Chronic vestibular syndrome (at least 3 months duration) with at least 2 of the following symptoms:
 - Postural imbalance or unsteadiness.
 - Gait disturbance
 - Chronic dizziness
 - Recurrent falls
- B. Mild bilateral peripheral vestibular hypofunction documented by at least 1 of the following:
 - VOR gain measured by video-HIT between 0.6 and 0.83 bilaterally
 - VOR gain between 0.1 and 0.3 upon sinusoidal stimulation on a rotatory chair (0.1 Hz, Vmax = 50-60°/sec)
 - Reduced caloric response (sum of bithermal maximum peak SPV on each side between 6 and 25°/sec)
- C. Age ≥ 60 years
- D. Not better accounted for by another disease or disorder
- Does borderline vestibular function cause dizziness?

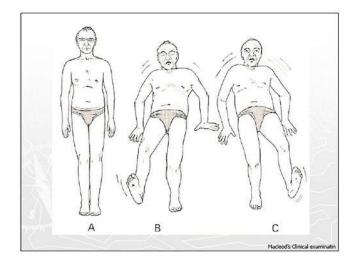
Multi-sensory dizziness

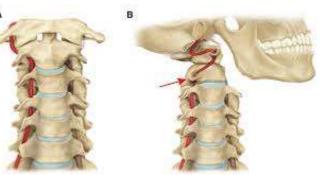
 Multi-sensory dizziness may be the most common cause of chronic dizziness in the elderly.

Multi-sensory dizziness - Vision

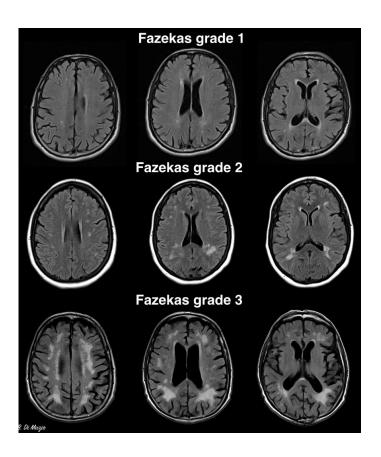
Visual disturbance

- Presbyopia → Multifocal lens
- Cataract → Cataract surgery (unilateral > bilateral)


Visual dependence


- Inappropriate sensory re-weighting
- Supermarket syndrome
- **Primary:** aging, anxiety, and migraine history
- Secondary: inadequate substitution after vestibular loss

Multi-sensory dizziness – Somatic sensation


- Polyneuropathy (e.g. DM)
- Osteoarthrosis (e.g. knee/hip OA)
- Cervicogenic dizziness
 - Vestibular cortex receives many proprioceptive fibers from neck
 - Cervical whiplash injury is proven to induce dizziness
 - C-spine degeneration cause dizziness?
 -controversial...may be an exacerbating factor
 - D/D: rotational vertebral artery syndrome (bow hunter syndrome)

Cerebral small vessel disease

- Dizziness in the elderly seems to be related to severity of SVD
- Two theories:
 - SVD → imbalance → sense of disequilibrium → dizziness
 - SVD → disconnection between multi-sensory and motor fibers → dizziness
- Many SVD patients do not complain of dizziness!!....may be an exacerbating factor

Baloh et al. Arch Neurol 1995 Cerchiai et al. Front Neurol 2018

家醫科醫師觀點

Dizziness: a Geriatric Syndrome

Multiple risk factors in most older patients with dizziness

- A: Anxiety or depression
- B: Blood pressure (e.g. orthostatic hypotension)
- C: Cardiovascular or cerebrovascular diseases
- D: multiple Drugs
- E: Ear degeneration
- V: Visual disturbance
- G: Gait disturbance

Suggestion for a favorable outcome

- 1. Treat A: low-dose medication or cognitive behavioral therapy
- 2. Treat D: medication reduction
- 3. Treat G: rehabilitation for balance

